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Abstract-On the basis of friction factor relationships of a simple model a method is developed which 
allows the prediction of friction factors for turbulent flow in non-circular channels if only the geometry 
factor of the pressure drop relationship for laminar flow is known. The proposed method of calculation 
is tested with numerous experimental results from the literature with respect to non-circular channels 
such as triangular shaped ducts, eccentric annuli and rod bundles in hexagonal and square arrays in 
circular tubes, hexagonal and square channels. It turns out that the proposed method provides an excellent 

description of all the experimental data at hand. 
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NOMENCLATURE 

geometry factor ; 
rod and tube diameter, respectively ; 
hydraulic diameter ; 
flow cross section ; 
geometry factor (turbulent flow); 
geometry factor (turbulent flow) ; 
geometry factor (laminar flow) ; 
geometry factor for circular tube ; 
geometry factor for annular zone ; 
characteristic length ; 
length in flow direction ; 
distance between rod centres ; 
pressure ; 
radius ; 

radii of annular zone; 

velocity; 
velocity averaged over the cross 
section F; 

u 
Ill%0 maximum velocity ; 

u*, friction velocity U* = J(zwlp); 

U+, dimensionless velocity U+ = Uf U* ; 
W wall distance in rod bundles = rod 

diameter + closest distance between 

channel wall and rods ; 
annular zone parameter ; 
wall distance ; 
dimensionless wall distance Y+ = 
Y V/v ; 
friction factor : 
friction factor of the circular tube; 
density ; 
wall shear stress ; 
kinematic viscosity. 

1. INTRODUCTION 

RESULTS of pressure drop measurements have 
been known for a number of years for turbulent 
flow in various non-circular channels which can- 
not be described in terms of the friction factors of 
the circular tube when using the hydraulic 
diameter as the characteristic length. Non- 
circular tubes, i.e. rod bundles, are used especi- 
ally in reactor technology. 

Both in theoretical and experimental studies 
of the friction factors of rod bundles the strong 
influence of the type and arrangement of channel 
wall upon the friction factor was soon dis- 
covered, however, without there being a general 
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solution to the dependence on geometry of the 
friction factors. 

Below, a method is developed and tested for 
various non-circular channels by means of 
numerous measured results which allows the 
friction factor for turbulent flow to be indicated 
in a simple way. The only condition on which the 
method can be applied is the required knowledge 
of the geometry factor of laminar flow. How- 
ever, geometry factors of laminar flow are 
known for a variety of non-circular channels or 
else can be determined quickly and rather 
accurately by numerical calculation procedures. 

A few methods are mentioned in the literature 
which can be used to calculate the friction factor 
for turbulent flow on the basis of laminar solu- 
tions [l-4]. These methods will not be mentioned 
in more detail in this paper because the method 
outlined here is basically different and refers only 
to the geometry factors of the pressure drop 
relationships. For this purpose, the geometry 
factors will be explained very briefly. 

2. GEOMETRY FACTORS OF THE PRESSURE 
DROP RELATIONSHIPS 

The pressure drop relationship for laminar 
flow is 

ARe= K (1) 

where the constant K is a geometry factor, 
because it is determined solely by the geometry. 
It is the eigenvalue of Poisson’s equation. 

For turbulent flow there is also a geometry 
factor, as has been proved by Maubach [5] 
for circular tubes, annular zones, and parallel 
plates. This geometry factor G of turbulent flow 
turns out to be 

with the maximum velocity U,,, the velocity 
averaged over the flow cross section U, and 
the friction velocity U* = J(z,/p). 

Maubach was able to show that this geometry 
parameter G has a characteristic value for each 

shape of channel, which value is independent of, 
for instance, the roughness of the channel or 
the Reynolds number, if, in case of small Rey- 
nolds numbers, the factor is left out of account 
that the sublayer close to the wall gives rise to 
a minor correction. 

Of course, this geometry parameter occurs 
also in the pressure drop relationships of the 
geometries studied by Maubach. Under the 
condition of a universal velocity profile existing 
for the channels investigated, such as Nikuradse’s 
profile, 

U’ = 2.5 In y+ + 5.5 (3) 

the pressure drop relationships are written as 
follows [5] : 

LV = 25 In- + 5.5 - G (4) 
V 

where L is the length characterizing the flow 
cross section, which is the thickness of the flow 
layer in the geometries studied by Maubacb 

As is evident, the following questions arise 
in the light of these facts: 
(1) Can a relationship be established between 

the two geometry parameters K and G 
for laminar and turbulent flow, respectively? 

(2) What must be the structure of the pressure 
drop relationships for channels with the wall 
shear stress variable on the circumference 
in order to fully take into account both 
experimental and theoretical results? 

3. MULTICHANNEL EFFECT 

For more detailed studies of the pressure drop 
behaviour of channels with wall shear stresses 
variable on the circumference it is necessary to 
visualize the characteristics of such channels. 
One characteristic all these channels have in 
common is a different curvature of the walls 
either, as in the case of annuli, there are different 
radii of curvature of the walls or, as in triangular 
shaped ducts, discontinuities in the curvature 
of the wall in the comers. Now, it has been 
proved in a large number of experiments that 
the velocity profile obviously is not influenced by 
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the curvature of the wall [7-l 11. Results 
obtained on annuli by Brighton and Jones [ 121 
showing a dependence of the velocity profile on 
the curvature of the wall do not agree with 
measurements by Quarmby [ 181. Quarmby 
concludes that the results by Brighton and 
Jones are wrong. However, we believe the 
results by Brighton and Jones have been mis- 
interpreted because of the assumption that the 
line of maximum velocity was identical with the 
line of zero shear stress [ 141, which results in a 
dependence on wall curvature of the velocity 
profile in the results of Brighton and Jones. 

Another characteristic of the channels with 
a wall shear stress variable on the circumference 
is the existence of zero shear stress lines in the 
flow area. Such flow channels can be sub- 
divided along these lines because, averaged over 
time, there is no momentum transport across 
these lines. Such subdivision gives rise to 
parallel subchannels which are independent of 
each other. Since these subchannels in general 
have different flow cross sections and wall 
fractions, the way in which the individual 
parallel channels interact and the relationships 
that can be derived from such interaction must 
be investigated. 

Parallel circular tubes 
These relationships will be derived by a 

simple example which can be described un- 
ambiguously in terms of the solutions available. 
For this purpose, the model of parallel circular 
tubes suggested by Maubach will be used. 

We look for the friction factor of a number of 
smooth, parallel connected circular tubes of 
various diameters with inner flow, that is a 
flow channel with several sub-channels. 

An incompressible, isothermal, fully 
developed turbulent flow is assumed. In ad- 
dition, the tubes are assumed to be long enough 
to make the inlet and outlet losses small 
relative to the friction pressure drop. Hence, it 
applies for all the parallel channels that 

where pi is the pressure in the ith channel of the 
diameter Di. 

Now, according to Maubach [5], the follow- 
ing friction law (4) applies for smooth circular 
tubes with L = Di/2 and 

(6) 

with the geometry parameter for Reynolds 
numbers Re < lo6 

Gi = U&,,, - U,+ = 3.966. 

The equation defining the friction factor 

0-9 

and (5) result in 

AU? AU2 
-LA = con& = 2. 
Di Dh 

(9) 

(10) 

Finally, the continuity equation furnishes 

c ” u. F. , 
L-f= . 

urn F 
i =l 

From (10) it is found that 

(11) 

z=J(;) J(i) (12) 

which turns (11) into 

x J&$ J(i)= 1 (13) 

i=l 

or 

J(“1) = 2 &)&);. (14) 
i =1 

In this way the wanted friction factor L of the 
entire channel has been found. 
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From (7) it follows with (12) 

/(;)= *.51n[;;J(+) 

X Urn/($))(i))) + 5.5 - Gi 

and the hydraulic diameter of the entire channel 

&)=2.5ln [Re&(3+] 

+ 5.5 - Gi. 

4 f Fi 
DhZ+_. (22) 

(15) 
in, pi 

Since the quantities of A and G* defined in (19) 
and (20) depend only on the diameter and area 
relationships and the geometry parameter Gi, 

Substituting (16) in (14) yields 

J(i) =r J(D& 

i=l 

(16) 
A and G* are two new geometry parameters 
which are independent of the flow condition, 
i.e. the Reynolds number. 

For laminar flow in the sub-channels it applies 
for each tube that 

x b*5ln [Rc /(:):(2>1 + 5.5 - Gil and for the entire channel 

(17) 

(23) 

(24) 

Now, the pressure drop relationship of the entire 
channel can be written as The continuity equation (11) and (10) can be 

d(i) = A [2.51&?&)+ 5.51 -G*. 

used to find for the geometry factor of the entire 
channel in the case of laminar flow 

A 

A comparison of coefficients 

(18) 

makes (17) and 
&es = n 

64 
(25) 

Di 2 Fi 

C( )- K F 
i=l 

G* = -r [2>5lnf$d($)- G] 

i=l 

X 

with the entire area 
n 

F= 1 F, 
i =l 

(19) For calculation of the friction factors for laminar 
and turbulent flow it is assumed that a tube of the 
diameter D, with n tubes of the diameter D2 
make up a channel. Hence, the channel is 
determined by D,/D, and n. 

Table 1 is a compilation of the Kges, A and G* 
determined for various parameters investigated. 
Moreover, the friction coefficient referred to the 

(20) 
circular tube value is indicated for Re = lo4 
and Re = 10’. 

In Figs. 1 and 2, the relative friction factors 
are plotted over the diameter ratio with the 

(21) number of parallel tubes as a parameter for 
laminar and turbulent flow, respectively. It is 
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Table 1. Results for parallel circular tubes 
(G = 3.966) 

414 0.05 0.01 0.3 0.5 0.9 

n=l 
K sea 58.59 54.49 48.65 52.29 63.48 
A 1.021 1.037 1.051 1.031 l+Ol 

n”;;, Re = lo4 5.650 0.947 5603 0911 5.520 0.874 5.575 0.919 5.694 0.997 
L/1, Re = 10’ 0.950 0.915 0.881 0.923 0.998 
n=2 
K *es 53.69 47.16 40.42 48.00 63.50 
A 1.042 1.070 1.084 1.042 1+X)1 
G* 5.599 5.504 5.380 5.521 5.695 
A/& Re = 104 0.899 0.838 0.804 0892 0.998 
,?I.& Re = lo5 0.904 0.846 0.814 0.898 0.998 
n=5 
K w 42.51 32.91 30.00 45.34 63.66 
A 1.101 1.156 1.129 1044 1.001 
G, Re = 104 0.781 5.436 0684 5.198 0.717 5.135 0.885 5.494 0.998 5.696 

A/& Re = lo5 0.791 0.697 0.731 0.892 0.999 
n = 10 
K *es 30.63 21.27 25.38 4691 63.78 
A 1.187 1.265 1.140 1.035 1000 
!$, Re = IO4 0643 5.143 0.540 4.706 0.694 5.014 0906 5.527 0.999 5.697 

J./l, Re = lo5 0.657 0.557 0.709 0.912 0.999 

1.0 

x 
KR 

0.5 

I I I I I I 
0 

?Zbl 
1.0 

FIG. 1. Tubes in parallel : laminar flow. 

0 4/D, 1.0 

FIG. 2. Tubes in parallel: turbulent flow. 

evident that the friction factor is decreased with 
irregular flow distribution. Depending upon the 
number of tubes the minimum of the overall 
friction factor is shifted towards the other 
D,/D1. For a large number of tubes the friction 
factor is decreased significantly below the value 
of the single tube. This behaviour is typical of 
friction factors in the case of parallel connection 
of channels of different cross sections and shapes 
of cross sections. The effect is called the multi- 
channel effect. 

4. NEW METHOD OF CALCULATING FRICITON 
FACTORS 

A comparison of Figs. 1 and 2 clearly indicates 
that the friction factor in turbulent and laminar 
tlows show a similar behaviour. In laminar flow, 
the dependencies are more marked than in 
turbulent flow, but the basic shape of curves is 
the same. The same results are found by com- 
paring the measured results obtained from tri- 
angular shaped ducts, eccentric annuli, and rod 
bundles for laminar and turbulent flows. It 
turns out that if, for a specific geometry, the 
friction factor for laminar flow drops below the 
circular tube value, also the friction factors for 
turbulent flow are lower than the circular tube 
values, and vice versa. 

If this effect can be ascribed mainly to the 
geometry factors of the pressure drop relation- 
ships, it must be possible to establish a relation- 
ship between the geometry factors. Since, in 
laminar flow, only one geometry factor K is 
needed to describe the pressure drop relation- 
ships, whereas it takes two, namely A and G*, 
in the case of turbulent flow, as we have seen, 
the geometry factors A and G* are plotted over K. 

Figure 3 is a plot of the magnitudes of G* 
obtained from the multi-tube model. It appears 
that for K > 20 the points can be arranged on 
a curve with only a small amount of scatter. 
Geometries so far investigated experimentally 
and applied in practice always have values in 
excess of K = 20. For geometry factors K > 64, 
the respective G* values were determined from 
the annular zone solution. In this case, the 

D 
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laminar solution of the annular zone turns out and with (6) and 
to be [15] 

64(x2 - 1)s L (r() - rz)2r, 1 
KRZ = 

-= 
(2f3) Dh (I; - r5)4 = ~ (30) 

3x4 - 4x2 - 4x2 In x + 1 2(1 + x) 

with the annular zone parameter (cf. Fig. 4) 

x2. 
r, 

to be 

= 2.5 In Re 

The values of the parameter G* for the annular 
zone in a turbulent flow are obtained from 
Maubach [5] as 

G = 3.966 + 1.25x 

1+x (28) 

for smooth walls and in an analogous way as 

- [G + 2.5 ln2(1 + x)]. 

A comparison with (18) results in 

G& = G + 2.5 In 2(1 + x) 

and with (28) in 

in (7) 

= 2.5 ln Lu* + 5.5 - G 
V 

a’ d K 
FIG. 3. Geometry parameter G*. 

i 

c 

c 
I 

(29) 

1 
p 

D’ 

(31) 

(32) 

G& = 
3.966 l t. 1-25x 

1+x 
+ 2.5 In 2(1 + x). (33) 

FIG. 4. Annular zone. 

Table 2 lists the values of the geometry factors 
K and G* for various values of x. In addition, it 
is seen that A = 1 for annular zones, which is 
no surprise because there is a constant wall 
shear stress on the circumference and no sub- 
channels can be generated. 

The parameters A in Fig. 5 obtained from the 
multitube calculation also can be represented 
in a curve in good approximation which, in this 
case, is a straight line. 

The geometry factors A and G* represented 
above for turbulent flow in channels can now 
be used to establish pressure drop relationships 
also for other geometries, if the geometry para- 
meter K for laminar flow is known. 

For a number of flow channels, the laminar 
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Table 2. Values of the geometry parameters of the annular 
zone in laminar (K) and turbulent (G*)Jlo ws 

x K G* 

0 640.N 5.6988 
0.1 64.604 5.6902 
0.2 66.217 5.7020 
0.3 68.574 5.7280 
0.5 74.836 5.8072 
0.9 91.200 60170 
1.0 960Xl 6.0737 
1.1 100.912 61310 
1.5 122.183 6.3600 
2.0 152.091 6.6327 
5.0 393.638 7.9 149 

10.0 993.546 9.2245 

solution is known from the literature. For 
triangular shaped ducts, an approximative solu- 
tion is found with Carlson and Irvine [ 161, 
theoretical data are also given by Sparrow [ 171 
and Sparrow and Haji-Sheikh [ 181. For eccentric 
annuli Tiedt [19] has compiled the laminar 
solutions for all diameter ratios and eccentrici- 
ties. For rod bundles there are solutions by 
Sparrow and Loeffler [20] and Sholokhov, 
Buleev and Cribanov [21] for rod bundles of 
infinite extension. For rod bundles with seven 

1.3 

A 

I.2 

1.1 

1.0 

n 

l 1 
A 2 
0 5 
8 10 

rods in circular tubes laminar solutions are 
indicated by Courtaud, Ricque and Martinet 
[22], Axford [23, 241 and Min, Hoffman, 
Tucker and Peebles [25]. For rod bundles in 
hexagonal and square channels, the author has 
elaborated laminar solutions by numerical 
integration of Poisson’s equation for the sub- 
channels in such rod bundles (centre, wall and 
corner channels for a wide range of rod distance 
ratios P/D and wall distance ratios W/D [ 15,261. 
With these sub-channel geometry factors, the 
geometry factors for laminar flow can be cal- 
culated in a very simple way for all rod bundles 
so far investigated experimentally. For ducts 
with arbitrary cross-section Pendergast, Cobble 
and Smith [27] reported analytical solutions of 
Poisson’s equation. 

The method suggested for calculation of the 
pressure drop relationships for turbulent flow 
from the laminar solutions, called the G*- 
method below, can be justified only by saying 
that the measured results available for various 
channels with non-circular cross sections are 
described sufficiently well by the pressure drop 
relationships obtained in this way. 

Influences of anisotropy of the turbulent 
transport quantities or by secondary flows 

10 20 40 

FIG. 5. Geometry parameter A. 
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observed in non-circular channels of course are developed turbulent flow obviously is .not yet 
not taken into account in a method like this. complete, hence, the slightly greater deviation. 

In the same way, a momentum exchange 
between the individual sub-channels of a rod 
bundle is neglected because the lines for which 
the momentum transport disappears are selected 
in the calculations to be the lines resulting if the 
rods proper and rod and channel wall, res- 
pectively, are subdivided at their closest distances. 

However, in general these simplifications 
have but a negligible effect on the friction factors, 
as has been proved by various authors. 

For eccentric annuli, Fig. 7 contains the data 
measured by Johnson [30] for a diameter ratio 
of d,/d, = 0.75 and d,/dz = 0.281, respectively. 
In the case of the lower diameter ratio there is 
excellent agreement between measured and 
predicted values: this is not the case for the 
higher diameter ratio. The data measured by 
Tiedt [19] show the same behaviour (Fig. 8). 
For low diameter ratios, again, experiment and 
theory are in excellent agreement; for high 
diameter ratios agreement is excellent for the 
concentric case only. Figure 9 shows the 
measured data by Bourne, Figueiredo and 
Charles [3 l] foradiameter ratioofd,/d, = 0.813 
(top). In the turbulent region. the predicted line 
fits the data excellently, even for a high diameter 
ratio. Data by Lee [32] are shown in Fig. 9 
(bottom) for a diameter ratio of d,/dz = 0.387. 
In this case, there would be excellent agreement 
with the predicted values if all the data were 
shifted by about 10 per cent, a margin which is 
necessary also for good agreement between the 
predicted and the measured values for other 

5. COMPARISON BETWEEN CALCULATED AND 

AND MEASUBED DATA 

The method suggested above will be tested 
with triangular shaped ducts, eccentric annuli, 
and rod bundles. 

Figure 6 shows the data measured by Carlson 
[28], which were reported also by Eckert and 
Irvine [ 16,291, obtained from triangular shaped 
ducts. Agreement between the measured values 
and the calculated ones is good. For small 
angles, the transition from laminar to fully 

2a = 22.3' 

2a .7.96* 

n" 10‘ Rt 10” 

FIG. 6. Triangular shaped duct: Carlson. 
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d,/d,=0.75 

- Theory 

0.01 
10' 105 

Re 

Re 

FIG. 7. Eccentric annuli: Jonsson. 

diameter ratios tested by Lee and not shown here. 
The assumption that the data by Lee are too 
high is reasonable, if one considers the excellent 
agreement between theory and experiments of 
different authors in the case of concentric 
annuli [33]. 

To illustrate the difference between the pre- 
dicted values and the measurements for high 
diameter ratios, Fig. 10 shows all measurements 
known to the author which are related to the 
concentric values for maximum eccentricity 
(e = 1.0) and different diameter ratios. 

The values measured by Jonsson [30] and 
Tiedt [19] are the lowest for high diameter 
ratios ; they are correlated rather well-especially 

with respect to the dependence on the diameter 
ratio-by the calculations of Eifler and Nijsing 
[34]. The experimental results of Bourne et al. 
[31], Lee [32], Denton [35], and Dodge [36] 
are higher and well correlated by the method 
suggested above. It is impossible to decide at 
this time which experimental values are best, 
even in the light of the data measured by Diskind 
[37] for eccentricities between e = 09 and 
e = O-97 tending to the higher values, and the 
investigation of Stampa [38] who reported “the 
influence of eccentricity measured by Tiedt 
could not be verified by our experimental 
studies”. 

Now for the rod bundles. For seven rods in a 
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0.02 

0.01 

O.Ob 

A 

0.02 

0.01 

A 

a.02 

0.01 I !I I 
ia4 Re lo’ 

FIG. 8. Eccentric annuli: Tiedt. 

A 

0.1 

0.01 
2x? lo) lo’ f?e 

o.oi ---MY 

lo’ a5 
FIG. 9. Eccentric annuli. 
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0 02 0.‘ 0.6 
“’ d,/d, ‘-O 

FIG. 10. Eccentric annuli: e = 1.0. 

circular tube Courtaud et al. [22] performed 
experiments with a large number of rod distances. 
The results are shown in Fig. 11. Except for 
the extreme position, in which the rods contact 
each other, there is excellent agreement between 
the calculated and the experimental data. The 
same applies to the studies conducted by the 
author on rod bundles in hexagonal channels 
with rod distance ratios P/D equal to the wall 
distance ratios W/D [39, 401 for different rod 
distance ratios and rod numbers, as is shown in 
Figs. 12-14. Also for other wall distances there 
is good agreement between experiment and 
theory. This is shown by the measured data of 
Galloway and Epstein [41, 421 for 19-rod 
bundles with half the rod distance as the wall 
distance (Fig. 15). The results measured by Gunn 
and Darling [ 1, 431 for rod bundles in a square 
array could well be described also by the curve 
determined by the G*-method (Fig. 16). The 
excellent description of the experimental results 
by the theoretical method is shown especially 

mzll 

m:lO 

m.9 

10 
m.8 

2m.k 
m37 

m=6 

m=5 

m.4 

m=3 

Re 

FIG. 11. Rod bundles : Courtaud et al. 

by extreme shapes of channels such as those 
occurring for rod bundles with P/D = 1 and 
W/D = 1, respectively. 

For the square array, Gunn and Darling 
[l, 431 have performed measurements on one 
centre, side and comer channel each. Figure 17 
shows the results. Agreement with calculated 
data is good. The theoretical geometry factors 
for laminar flow [ 151 were used for calculation. 
The values measured in the laminar area are 
slightly higher than the theoretical solution. The 
agreement would be perfect if the values 
measured by Darling were used for K. For 
P/D = 1 in a square array, measured results 
have been communicated also by Ushakov et al. 
[44]. Agreement is good (Fig. 18). 

For P/D = 1 in a hexagonal pin array, Fig. 19 
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*I’ ID” 

FIG. 12. Rod bundles: Author. 

la‘ 

FIG. 13. Rod bundles: Author. 
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---Circular 81.4~ 

- Theory 

I 

Re 
FIG. 14. Rod bundles: Author. 

m.3 

m=2 

m=l 

P.- 
-.__ I - 

--__ 
-Y> 

---Circular tuba 
--Tky 

0 0, 

0’ -2 -1 u m- 
Rt “’ 

FIG. 15. Rod bundles: GaIIoway. 
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FIG. 16. Rod bundles: Gum and Darling. 

x 

0.01 

0.M 

FIG. 17. Rad bundles: Darling. 
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d 

FIG. 18. Rod bundles: Ushakov et al. 

1_ 

0 Data of SUBI ,r ’ __ 

BOTIN ef al. 
A Data of LEVCHENKOet al. 

---- Circu -.. ._i.r tuba 
- Theory 

101 10’ 

FIG. 19. Rod bundles. 

log Re 

shows the results measured by Subbotin et al. fulfilled as a rule for the channels occurring in 
[45], and Levcheko et al. [S]. All measured practice. 
values are excellently described by the curve of In that case, the geometry factors A and G* 
the friction factor by the G*-method. can be taken from two diagrams in which the 

pressure drop relationship 

6. CONCLUSIONS 

In summary it can be said that the friction 
J(i) = A[25 lnReJ(a)+ 5.5]- G* 

factors calculated by the method outlined for 
turbulent flow in channels with non-circular for turbulent flow is determined. 
cross sections very -well describe the experi- Because of its easy application and yet high 
mental data at hand. accuracy, this method of calculation of friction 

The method is very simple because it requires factors in turbulent flows is superior to all the 
only knowledge of the geometry factor for methods of calculation previously suggested. 
laminar flow, which is a condition that can be Hence, it can be used also for other,shapes of 
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channels to predict friction factors for turbulent 14. K. MAUBACH and K. REHME, Negative eddy diffusivities 

flow with sufficient accuracy and in a simple way. for asymmetric turbulent velocity profiles? Int. J. Heat 
Mass Transfer 15,425-432 (1972). 

15. K. REHME, ~minarstr~mung in Stabb~ndeln, Chemie- 
r~~.-~ec~~~ 43.962-966 (1971). 
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METHODE SIMPLE DE CALCUL DES FACTEURS DE FROTTEMENT POUR 
L’ECOULEMENT TURBULENT DANS DES CANAUX NON-CIRCULAIRES 

R&n& A l’aide des lois regissant la perte de charge dans un modele simple une methode est mise au 
point qui permet de calculer le coefficient de perte de charge d’un koulement turbulent dans les canaux 
non-circulaires, supposant seulement la connaissance du facteur de geomttrie de la loi regissant la perte 
de charge de l’ttcoulement laminaire. La methode de calcul propo& est vtritiQ sur de nombreux resultats 
experimentaux derives de la litttrature et portant sur des canaux non-circulaires, p.ex. des triangles 
acutangles, des fentes annulaires excentriques et des faisceaux de barres disposes de faccm hexagonale et 
car& dans des tubes circulaires et des canaux hexagonaux et car&. 11 apparait que l’ensemble du 

materiel experimental peut &tre tres bien dtcrit a l’aide de la mtthode mise au point. 

EINFACHE METHODE ZUR BESTIMMUNG VON REIBUNGSKOEFFIZIENTEN FUR 
TURBULENTE STROMUNG IN NICHT-KREISFORMIGEN KANALEN 

Zusammenfassnng-Anhand der Druckverlustgesetzmlssigkeiten eines einfachen Modells wird eine 
Berechnungsmethode filr den Druckverlustbeiwert bei turbulenter Striimung in nicht-kreisformigen 
Kanalen entwickelt, wobei nur die Kenntnis des Geometriefaktors des Druckverlustgesetzes fiir die 
laminare Striimung vorausgesetzt wird. An zahlreichen Versuchsergebnissen aus der Literatur beztiglich 
nicht-kreisfijrmiger Kanlle wie spitzwinklige Dreiecke, exzentrische Ringspalte und Stabbiindel in 
hexagonaler und quadratischer Anordnung in Kreisrohren, Sechskant- und Vierkantkanllen wird das 
vorgeschlagene Berechnungsverfahren geprilft. Es zeigt sich, dass das gesamte Versuchsmaterial mit 

dem entwickelten Verfahren sehr gut beschrieben werden kann. 



950 K. REHME 

HPOCTOlil METOA PAWETA H03@@IJLJHEHTOB TPEHBfi TYPBYJIEHTHOI’O 
TEYEHHH B HEHPYrJIbIX ECAHAJIAX 

AmoTaqm-Ha OCHOBe 3ElKOHOMepHOCTeti IW~paBJIWfeCHOrO COIIpOTHBJI0HElR IIpOCTOI-0 

MOAWIR pa3pa60TaH MeTOn BbI’lHCJIeHIIFI KO3IfI@H~IJeHTZl lYI@ZGlBJIHW%KOrO COItPOTABLNeHHH 

np~ TypGynemwoM noToKe WIAKOCTM B HeKpyrnblx fEaHanax, npmeiv npeAnonaraeTm 
ToXbKo 3Hame reoMeTpmecKor0 +awopa 3aIEoHa rnApasnmecKor0 conpommemm Ann 
JIaMMHapHOrO IIOTOKZI. ~p0AJIaIWMbIfi MeTOR paC.YeTa IIpOBepeH C IIOMOUbIO MHOI-OWICJIeHHbIX 

3KClEPRMeHTaJIbHbIX AaHHbIX B JIHTepaTJ’pe OTHOCMTeJIbHO TaKHX HeKpJ’IYIbIX KBHBJIOB, 

K;LK : OCTpOyl-OJIbHbIe TPeYrOJIbHRKLi, 3KCqeHTPWiHbIe KOJIb~eBbE 333OpbI B &lYYKH CTepmHeii 

C IIRCTHyrOnbHOti II KBaApaTHOti &EIIIeTKOii B KpyrJIbIX Tpy6ax II KaHaJIaX W3TbIpeXJ’I’OJIbHOrO 

I4 LUf2CTHJ’rOJIdHOI-0 CfSieHPli%. OK33bIBaeTCfI, YTO BWb 3KCIIepMMeHT3JIbHbIfl MaTepllan OqeHb 

XOPOIIIO OIIHCbIBEleTCR IIJ’TeiV 3TOrO p33pa60TaHHOrO MeTOfia. 


